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Monte Carlo Study of Tricritical 
Dynamics in Two Dimensions 
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The dynamical tricritical behavior for the spin-1 Ising model with single-ion 
interaction is investigated in two dimensions using Monte Carlo simulations. 
The nonlinear dynamical tricritical exponent zt is determined from the 
asymptotic power-law relaxation of the magnetization. The value z t=  
1.99 + 0.04 reported here is the first estimate of the dynamical exponent at a 
multicritical point, in two dimensions. 
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1. I N T R O D U C T I O N  

Static tricritical properties of magnetic systems have been investigated in 
two and three dimensions using various techniques. (1-~~ For dimen- 
sionalities d~> 3 the tricritical exponents are mean-field-like except for 
logarithmic corrections at d = 3. For d = 2 strong fluctuations are expected 
to change the critical exponents. In some cases, as in the next-nearest- 
neighbor Ising antiferromagnetic, (H) even the qualitative features of the 
phase diagram predicted by mean field theory are modified by the fluc- 
tuations. Very little, however, is known about the dynamical behavior at a 
tricritical point/m) Early work in tricritical dynamics includes the study of 
the tricritical relaxation of the 3D Ising model with competing 
interactions, ca) In that work, however, no attempt was made to give an 
accurate estimate of the dynamic exponent. We have therefore carried out a 
Monte Carlo simulation in order to study the time evolution of the order 
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parameter at a tricritical point with Glauber dynamics and to estimate the 
dynamic exponent associated with the relaxation process. We have chosen 
the Blume-Capel model. 

The Blume-Capel model is a spin-1 Ising model in the presence of a 
single-ion anisotropy, namely 

14= - j  2 s, s j+DZ s -I4Z S, (1) 
( i j )  i i 

where the Ising ferromagnetic interactions are restricted to the Z nearest 
neighbor pairs of spins. In the absence of the magnetic field H, the crystal 
field interaction raises the energy of the S =  +1 state by an amount D 
above the S = 0 state. In the limit of very strong anisotropy (D ~ or) the 
S = 0  state is no longer occupied and the model reduces to the usual 
spin-1/2 model. The static critical and tricritical properties of the BC model 
have been investigated in detail by mean field theory, (3) renormalization 
group methods, (4 6) Monte Carlo simulations, (7'8) series expansions, (9) and 
Monte Carlo renormalization group analysis. (t~ 

A mean field approximation for the BC model predicts a second-order 
phase transition for the critical line with a critical temperature 

k B Tc/J = 2Z/[2 + exp(D/kB Tc)] 

This line remains second order for positive values of the single-ion 
anisotropy up to the tricritical point at k B Tc/ZJ= 1/3 and D/Z J= 2 In 2. 
Beyond this point the critical line becomes first order for increasing values 
of the anisotropy, but for D/Z J> 1/2 no phase transition occurs. As one 
would expect from universality arguments, the static critical exponents 
along the critical line remain Ising-like until the tricritical point is reached 
and a crossover phenomenon takes place, changing discontinously the 
critical exponents to tricritical ones. 

Although the mean-field picture is qualitatively correct, a precise 
location of the critical line and particularly of the tricritical point (which is 
essential for the study of critical dynamics) is a difficult task. Very recently, 
however, accurate numerical results from Monte Carlo renormalization 
group m) and transfer matrix (12) studies have become available on these 
topics. Early Monte Carlo studies of the bulk properties of the BC model (7) 
apparently overestimated the value of the tricritical temperature, as did 
recent MC analysis of interface behavior ~ for the same model. 
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2. M E T H O D  

The dynamic finite-size scaling theory ~14) predicts for the time 
evolution of the magnetization of a system of linear size L and dimension d 
the following scaling relation: 

M(t ,  e, g, h, L)  = L-P'/V'M(tL ~', eL 1/vt, gL ~'/~', hL ~'~'/~') (2) 

where e and h are the temperature and magnetic scaling fields, respectively. 
The scaling field g measures the deviation from the tricritical point along 
the line tangent to the transition line at the tricritical point. ~1'2'12) The 
exponents fit, vt, ~bt, and 6r are the static tricritical exponents and z, the 
dynamical one. At tricriticality e = g = h --= 0 and the relation (2) is reduced 
to the form 

M( t, Z,) = L-~'/~tM( tL - z,) (3) 

This expression implies the existence of a crossover time t* ~ L z such that 
for times below t* a bulklike power-law behavior for the magnetization 
takes place and for t > t* finite-size effects are observed, giving rise to a 
exponential decay for the magnetization. Since we are making simulations 
in large (L = 1200) systems for relatively short times, the magnetization will 
behave like 

M ~  t-~'/ .... (4) 

The above expression can be used to give direct information on the 
dynamical tricritical exponent z,. 

The Monte Carlo method (as) has been used to perform simulations on 
the Hamiltonian (1) at the tricritical point using a 1200 x 1200 lattice with 
periodic boundary conditions. We use the value kB T,/J=0.6091-t-0.0030 
and D , / J =  1.9655 + 0.0151 for the location of the tricritical point, recently 
obtained through a Monte Carlo renormalization group techniqueJ 1~) The 
spins evolve from a nonequilibrium configuration, where all spins are in the 
S =  1 state, to equilibrium through Glauber dynamics. The spins are 
flipped with the transition probability 

p = exp( - z l E / k B  T,)/[ 1 + exp( - A E / k B  Tt)] 

where d E  denotes the change in the energy for a spin flip. To allow 
simulation for large lattices we have applied multispin coding. {16) 

3. R E S U L T S  

In Fig. 1 we show the time evolution of the magnetization. The time is 
measured in Monte Carlo steps per spin (MCS). Each point represents an 
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Fig. 1. Time evolution of the magnetization. ( � 9  The Monte Carlo data; (--) the linear best 
fit in the interval 50 ~< t <~ 150. 

average over 40 samples. Measurements were made every 5 MCS. The 
error in each measurement is smaller than the size of the point. The 
straight line with slope -flt/vtzt = -0.03767 + 0.00073 was obtained by an 
error-weighted least square fit for times between 50 and 150 MCS. The 
data show the expected power-law behavior for the magnetization for times 
as short as 10 MCS, indicating that the above interval used to obtain the 
slope is well inside the asymptotic region. The data also show that the 
magnetization relaxes toward the equilibrium at a much slower rate at the 
tricritical point than at a critical one. 

In order to show that the limits large L and large t are reached, we 
also performed simulations using 160 x 160 and 320 x 320 lattices. The time 
evolution of the magnetization was recorded up to 500 MCS. The results 
are shown in Fig. 2. Measurements were made every 10 MCS. Each point 
represents an average over 600 and 100 samples for the small and large 
lattices, respectively. The straight line is the same obtained in Fig. 1. As one 
can see, no lattice effects are observed and the magnetization decay is not 
changing on a scale of 500 MCS, suggesting that the above limits are 
reached. 

To obtain an explicit value for zt we use the conjectured values {iv) for 
the static tricritical exponents fl, = 1/24 and v, = 5/9. Recent Monte  Carlo 
renormalization group results (n) suggest that the above conjecture might 
be in fact exact. This gives for the dynamic tricritical exponent the value 
z, = 1.99 + 0.04. To the best of our knowledge, this is the first at tempt to 
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Fig. 2. Time evolution of the magnetization for times up to 500 MCS. The lattices sizes are 
(O)  160x 160 and (A)  320x 320. ( - - )  The same obtained in Fig. 1. 

give an accurate estimate of the nonlinear dynamical critical exponent at a 
multicritical point, in two dimensions. An analysis of the critical-tricritical 
dynamical crossover phenomenon will be presented elsewhere. 
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